Coarser connected metrizable topologies

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weaker connected and weaker nowhere locally compact topologies for metrizable and similar spaces

We prove that any metrizable non-compact space has a weaker metrizable nowhere locally compact topology. As a consequence, any metrizable non-compact space has a weaker Hausdorff connected topology. The same is established for any Hausdorff space X with a σ -locally finite base whose weight w(X) is a successor cardinal.  2002 Elsevier Science B.V. All rights reserved. AMS classification: Prima...

متن کامل

Weak Topologies for the Closed Subsets of a Metrizable Space

The purpose of this article is to propose a unified theory for topologies on the closed subsets of a metrizable space. It can be shown that all of the standard hyperspace topologies—including the Hausdorff metric topology, the Vietoris topology, the Attouch-Wets topology, the Fell topology, the locally finite topology, and the topology of Mosco convergence—arise as weak topologies generated by ...

متن کامل

Basic Intervals in the Partial Order of Metrizable Topologies

For a set X, let Σm(X) denote the set of metrizable topologies on X, partially ordered by inclusion. We investigate the nature of intervals in this partial order, with particular emphasis on basic intervals (in other words, intervals in which the topology changes at at most one point). We show that there are no non-trivial finite intervals in Σm(X) (indeed, every such interval contains a copy o...

متن کامل

Two remarks on weaker connected topologies

It is shown that no generalized Luzin space condenses onto the unit interval and that the discrete sum of א1 copies of the Cantor set consistently does not condense onto a connected compact space. This answers two questions from [2].

متن کامل

Metrizable Köthe Spaces1

The sets A = A(r) and A*=A(A) are vector lattices, [l], and are called associated Köthe spaces. Initially Köthe and Toeplitz, [9], and later Köthe, in a series of papers of which [lO] is representative, studied these spaces for the case where E is the space of natural numbers with the discrete topology and p(n) = 1 for every natural number w. Dieudonné, [4], extended the theory to the case for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology and its Applications

سال: 2010

ISSN: 0166-8641

DOI: 10.1016/j.topol.2010.06.002